

We make the sun shine at night. Company Presentation

A team of professionals united to push forward grid-scale energy storage



phelas Vision

We are here to make 100 % renewable electricity a "nobrainer" everywhere on this planet.

phelas Mission

phelas offers a scalable, costeffective, and modular liquid air energy storage system for seamless integration of renewable energy in a co-located environment.

Founded in 2020 with support of the TU Munich

Headquartered in Munich, Germany

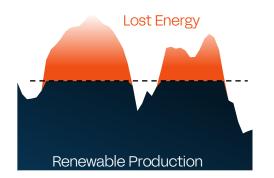
Team with 20+ people and more than 10 nationalities

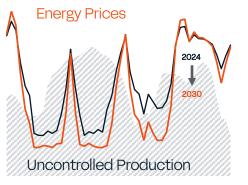
English as main working language

Sponsored by

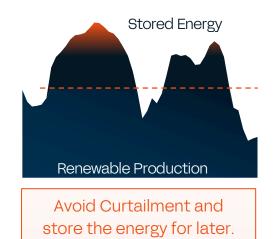
OUR SUPPORTERS AND INVESTORS

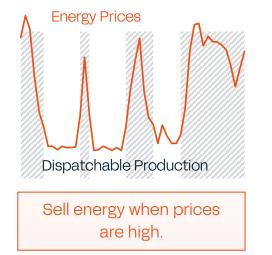
phelas.com





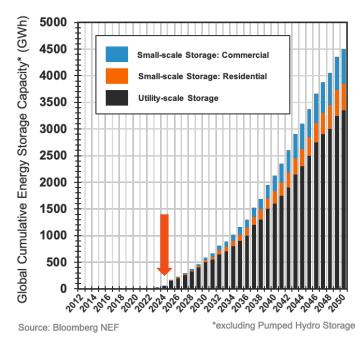
Technical Curtailment due to increasing grid congestion Cannibalisation lowers Market Capture Rate Revenue Decline for renewable energy assets in the coming years





 $\mathbf{\mathcal{D}}$

Technical Curtailment due to increasing grid congestion Cannibalisation lowers Market Capture Rate Revenue Decline for renewable energy assets in the coming years



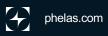
 \mathcal{D}

Globally Huge Investment is Needed to Keep Renewables Profitable \$620 Billion - Bloomberg New Energy Finance

MARKET GROWTH AND MARKET CAP FOR UTILITY SCALE ENERGY STORAGE

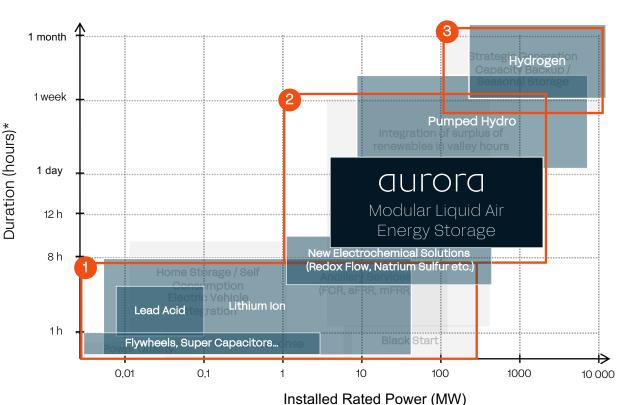
Year	Market Size by Bloomberg NEF	Market Size by IRENA
2020	5 GWh	-
2025	200 GWh	-
2030	500 GWh	370 to 745 GWh
2040	1600 GWh	-
2050	3400 GWh	3400 to 9000 GWh

Emerging need for large amount of sustainable, scalable, and resource-efficient energy storage

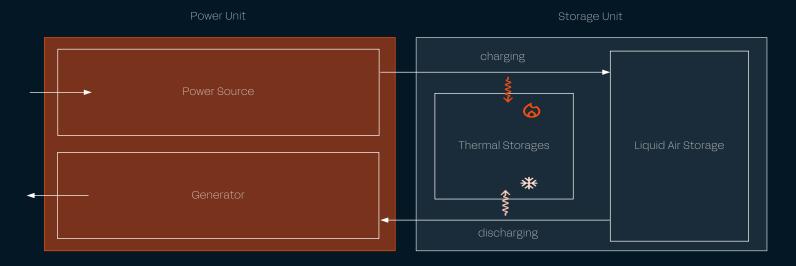


Advanced Storage Solutions for Clean Energy

Modular Liquid Air Energy Storage


aurora

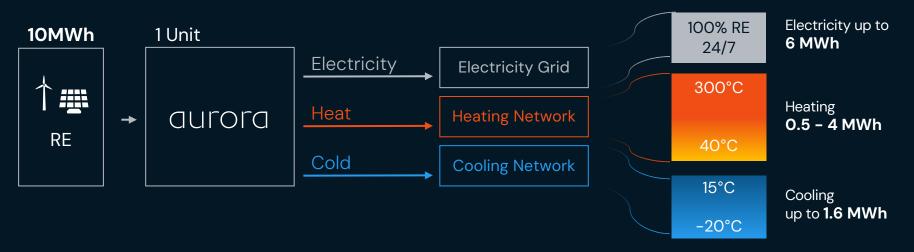
Aurora LAES bridges the gap in the energy market


- Different Energy Storage Technologies are needed to feed the rising demand of energy flexibility
- It is important to distinguish between
 - Short-term,
 - 2 Long-duration, and
 - 3 Seasonal energy storage solutions

phelas.com

 $\mathbf{\mathcal{D}}$

phelas Aurora: Scalable. Sustainable. Profitable.



phelas Aurora: The Integrated Renewable System.

Combined up to **10 MWh**

60 % electrical roundtrip efficiency if no heat or cold synergies are leveraged.

phelas Aurora: Scalable to GWh Storages.

Power and Storage are independent

Scale to the Size fitting your Demand

1 Power Unit: 1.5 MW 4 Storage Units: 18 MWh

4 Power Units: 6 MW 16 Storage Units: 72 MWh

100 MW + 1 GWh +

phelas Aurora: Scalable. Sustainable. Profitable.

Power Unit (1.5 MW)

Total System Performance Generation 1

Electrical Roundtrip Efficiency	50-60%
Capacity Degradation	None
Depth of Discharge	100 %
Design Discharge Duration	4 hours to 24 hours
Size per 40 Foot Container	12 x 2.5 x 2.6 m
Ambient Temperature	-20 to +50°C
Maintenance	Annual, 99% Uptime
Lifetime	30 years >30 000 Cvcles

Power Source and Generator Charging Power 2 MW_{el} per Unit **Discharging Power** 1.5 MW_{el} per Unit Response Time (Cold Start) < 30 Seconds Black Start Capability Yes Inertia Provision Yes

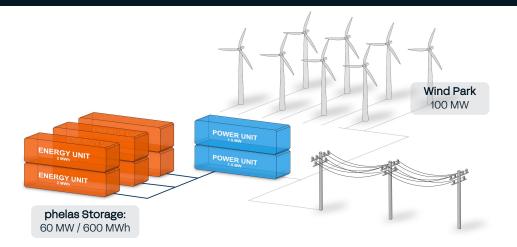
Storage Unit (4.5 MWh) Liquid Air Storage and Thermal Storage

```
Storage Technology
                                     Liquid Air + Thermal
Capacity
                                     4.5 MWh<sub>el</sub> per Unit
Self-Discharge Rate
                                     1% relative per day
```


Preliminary Specifications. May change without notice.

99

) 🗵 🔘 🎽


 \mathbf{E}

phelas Aurora: Safe properties.

 $\mathbf{\nabla}$

	Steel, Gravel, Air	Low-Cost of Storage Environmentally friendly Safe and Recyclable	Safe
	Off-the-Shelf Components	Long-life-time Easy Replacement Proven, predictable behavior	Reliable
	Containerized	Standard Logistics Easy Deployment Stays in Time and Budget Easy Replacement	Non- hazardous
	Modular	Scalable to GW Adjustable Power & Storage Flexible Operation & Maintenance	Predictable
	Local Supply Chain	Fast Service Response Available Spare Parts Compliant with Regulations Robust ESG Ratings	Economical
phelas.com			

Power-to-Power Use Case: Wind Park in Spain

	without Storage	with phelas Aurora
Average Yearly Revenue	26 m€	46.8 m€ (+80%) (1)
Curtailment Cost p.a.	- 0,3 m€	-
Additional Revenues p.a.	-	05.6 m€ (2)
Total yearly revenue	25,7 m€	52.4 m€ (+100%) ③

simulated with catalyst

VALIDATING USE CASES WITH:

Orsted 🛷 WIEN ENERGIE

Æ

phelas Catalyst Analytics results:

- Simulated in 15 mins intervals over 20 years generation data
- Location of Case Study: Portugalete Spain

phelas Aurora provides value by..

...charging electricity at low prices and discharge when wholesale electricity prices are high.

..avoiding grid curtailment and provide smoothed output.

..providing grid stability services (ancillary frequency services)

District and Industrial Heat: Enabled in Power Plant Size \Im

50 MW Residential Heating Network

Decentralized Heating for residential areas subsituting combined heat and power plant.

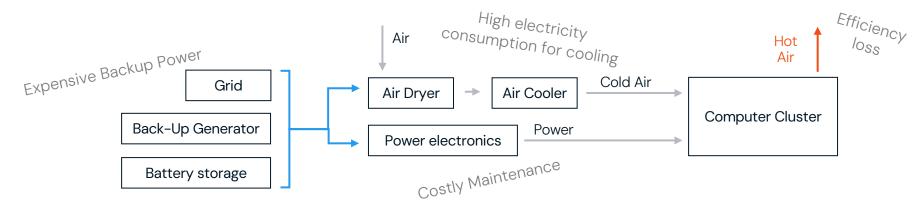
100 MW

Industrial Heat

Local heat supply for energy intensive companies and industry areas

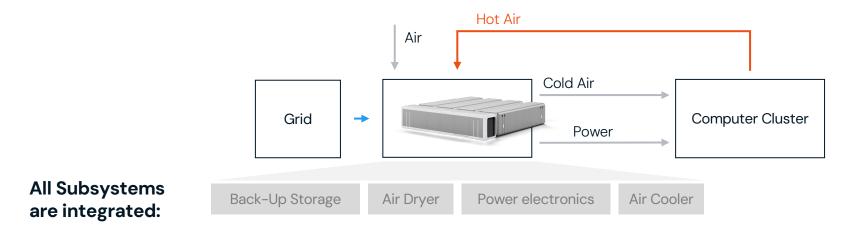
300 MW Semi-Centralized Plant -

Central thermal and electrical energy storage for cities. Located within or outside


The One-Stop Solution for Data-Centers.

Aurora Liquid Air provides value by

- Increased Energy Efficiency
- Low-Cost Cold
- Usage of Excess Heat
- Decarbonising Energy Demand
- Fossil-free Back-Up Power


Today, data centers require multiple subsystems to supply cooling, air 🚱 and electricity. This is costly and inefficient.

35% of total electricity consumption is used for cooling. In the Black-Out case, expensive backup power is used for this.

Many subsystems require continuous maintenance from different parties increasing cost and decreasing reliability. Thermal energy in exhaust air is **annihilated by expensive air conditioning**. This energy is wasted instead of utilized.

Use one system. Reduce complexity. Reduce cost. Reduce risk. 🧺

- 35% Electricity

phelas.com

confidential

Cooling is completely supplied by Aurora, so you can save electricity. - 20% Cooling Cost

Cold supplied by aurora is 20% cheaper than regular AC-Cold. This is possible by using heat from the cluster.

Integrated Backup

- ✓ Clean Backup-Power
- ✓ w/ Backup Cooling
- ✓ Reduced OPEX
- ✓ No added CAPEX!

Aurora is uniquely positioned to revolutionize the data center industry by making use of heat and cold.

High-tech data centers solve energy challenges with 20th century solutions:		Aurora brings 21st-century technology to the energy supply: Clean, Integrated, and smart!	
Dirty and Expensive Gen-Sets	Backup-Power	100s MWhs Stored in Liquid Air	
100% RE impossible	Electricity supply	100% Renewable Integration	
High connection cost	Electricity Cost	Reduce Cost by Demand Shifting	
Inefficient AC	Cooling	Integrated cooling capacity for MWs	
Expensive Backup-Power for AC	Emergency Cooling	Cooling without electricity	
Waste Heat is Wasted	Waste heat	Used to increase energy efficiency.	

Development and Scaling Timeline

PREVIOUSLY Proof of Concept

2021

- Concept System Design done
- Detail engineering of the first demonstration system

2022

• Complete construction and testing of the first lab-scale demonstrator of the core concept.

CURRENTLY EXECUTING Generation 0

2025

- Demonstration plant with ~1 MW / 8 MWh
- Deployment by 2025 in Bavaria
- Deployment at electrical substation for grid congestion management.

COMMERCIAL SYSTEM Generation 1

2026

- Four projects with each 1.5 MW / 18 MWh
- Deployment EU-wide
- Co-Location with Wind / Solar for Revenue Increase and Curtailment Reduction
- 30 year Lifetime, Optional All-Part Warranty
- 95 % Uptime

Two Projects Left

phelas.com

bayernuerk FICHTNER

Orsted

undisclosed

Become the visionary in large scale LDES deployments. arepsilon

Pilot Systems - Generation 1

2026

Easy deployable and flexible systems. Gain Experience with the next generation of LDES.

1.5 MW / 18 MWh System **Pre-Order 2024 –** Deployment Start 2026

250+ MWh Systems

Large economic plants. Be the first to deploy power plant-scaled storage systems.

Project Start 2025 – Deployment 2027/28

Let's start now!

Milestone - based Execution Deployment 2026 (EU) / 2027 (Non-EU)

FEASIBILITY STUDY	PRE-ORDER	PROJECT PLAN	FINAL INVESTMENT DECISION
Detailed technical and economic feasibility analysis of the Aurora System for your application.	Secures a spot for the Aurora System. Refundable until Final Investment Decision (FID).	Development of a detailed project plan , including timeline , resources, and budget for Aurora System implementation.	Final decision based on previous milestones and determination of technical speci- fications and overall budget.

Start of Execution

COMMERCIAL SYSTEM Generation 1

aurora

2026

- Four projects with each 1.5 MW / 18 MWh
- Deployment EU-wide
- Co-Location with Wind / Solar for Revenue Increase and Curtailment Reduction
- 30 year Lifetime, Optional All-Part Warranty
- 95 % Uptime

Let's start now!

Potential Applications

Data Center Cooling and Backup (Lower Cost by Integration)

District Heating Networks (Decarbonisation through Flexibilisation)

24/7 RE Power Purchase Agreements (Co-Location with Wind/Solar Power)

Low-Cost Green Hydrogen Production (Increasing Utilisation of Electrolyser)

COMMERCIAL SYSTEM Generation 1

2026

- Four projects with each 1.5 MW / 18 MWh
- Deployment EU-wide
- Heat and Electricity Use-Cases 30 year Lifetime, Optional All-Part Warranty
- 95 % Uptime

(f) phelas

Wind and Solar. All Day. Every Day.

Get into energy storage today: phelas.com

Leon Haupt

Business Developer & CoFounder leon@phelas.com

Justin Scholz CEO & CoFounder

justin@phelas.com